Ionic liquid CIL-313 as antistatic agent for ESD grade masterbatches

Contents
1. Properties of ionic liquids
2. Application of ionic liquids
3. Molecular structures of some ionic liquids
4. Physical properties of CIL-313
5. Use of ionic liquid as antistatic additive with IDPs
6. Materials for ESD
7. Examples of blending in masterbatch
8. Business development of CIL-313
9. Cost comparison of permanent antistatic agents
10. Application of CIL-313 in plastic parts
11. Opportunities for plastic parts manufacturers
Properties of ionic liquids

1. Thermally stable
2. Electrochemically stable
3. Low vapor pressure
4. Non-volatile
5. Non-inflammable
6. Electrically conductive
7. Miscible with many kinds of organic solvents
Application of ionic liquids

As a chemical for
- Fuel cells
- Electrodeposit on metals
- Solar cells (as electrolyte of dye sensitized solar cells)
- Sensors
- Super capacitors (as electrolyte of EDLC)

In Polymer Chemistry
- Antistatic Additives for resin compounds or masterbatch
Synthesis & Catalysis
- Immobilization of catalyst
- Solvents for organic reactions

Thermodynamic
- Thermal fluids
Molecular structures of some ionic liquids

Imidazolium type Pyridinium type Ammonium type

CIL-313
Chemical Name: 1-Butyl-3-Methylpridinium-Trifluoromethanesulfonate
Chemical Formula of CIL-313: C11H16F3NO3S
Molecular weight: 299.3 g/mol
Flash point: 275°C
Decomposition temperature: 315°C
Refractive index: 1.44~1.45 @25°C
Viscosity: 70 ~ 80 mPa • s @25°C
* Not applicable for injection moldings of which temperature is higher than 270°C
* CIL-313 complies with the RoHS
Mechanism of conduction

High electrical conductivity appears when CIL-313 is used with IDP.
⇒ high ion mobility along with IDP polymer chain.

IDP: Inherently dissipative Polymer (resin w/ high polarity)
⇒ example: poly(ether ester amid) (Permanent antistatic agent)

* CIL-313 will not bleed out because CIL-313 has strong interaction with IDP.
1. Carbon fiber (typically used)
 - Stable control of resistance is difficult.
 - It gives you black color only.
 * Typical surface resistance for ESD purpose is $10^6 \sim 10^9 \Omega$.

2. IDP+CIL-313
 - Use IDP only (15% addition to base resin) \(\Rightarrow 10^{10} \sim 10^{12} \Omega \)
 - Use IDP and CIL-313 \(\Rightarrow 10^7 \sim 10^9 \Omega \) (ESD grade).
 Possible to have transparent or color compound for ESD grade.

Example of IDP (Permanent anti-static agent) manufacturer

Company name (product name)
BASF (Irgastat), Dupont (Entira), Arkema (Pebax), Lubrizol (Stat-rite)
Sanyo chemical industry (Pelestat and Pelectron)
Examples of Blending

① For use with vinyl chloride (PVC)
Add CIL-313 0.3wt% only ⇒ surface resistance $10^9\Omega$
* Since PVC is high polarity resin, IDP assistance is not necessary.

② For use with PP, PE, PS, PC, PBT, POM, PMMA, PA6, PET-G, TPU
Add CIL-313 0.5wt% and IDP 10wt% ⇒ surface resistance $10^7 \sim 10^9\Omega$
* The molding processing temperature must be lower than 270℃.
(thermal resistance of CIL-313 is up to 270℃)

† CIL-313 can NOT be used for food and medical packaging.
(CIL-313 is not approved by FDA.)
Industrial use only (e.g. used for electric parts packing etc.)
1. CIL-313 has been used in a major chemical company in combination with ABS in Japan.

* CIL-313 can not be used with ABS only because of patent right in Japan.
* Other resin compounds and polymer alloy with ABS have no such issue.

2. CIL-313 is used by U.S. based chemical company for ESD grade color PC and TPU compound in Singapore.

* Surface resistance required for ESD was achieved for PMMA, PA6, PET-glycol in this company.
Cost comparison of permanent anti-static agents

<table>
<thead>
<tr>
<th></th>
<th>Carbon Black</th>
<th>Carbon Fiber</th>
<th>IDP + CIL-313</th>
<th>IDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit price / kg</td>
<td>USD3</td>
<td>USD28</td>
<td>IDP USD28 CIL USD450</td>
<td>USD28</td>
</tr>
<tr>
<td>Amount of addition</td>
<td>18wt%</td>
<td>10wt%</td>
<td>IDP 10wt% CIL 0.5wt%</td>
<td>15wt%</td>
</tr>
<tr>
<td>Anti-static agent cost / resin-1kg</td>
<td>USD0.5</td>
<td>USD3</td>
<td>USD5</td>
<td>USD4</td>
</tr>
<tr>
<td>Surface resistance</td>
<td>10^3~$10^5\Omega$</td>
<td>10^6~$10^8\Omega$ ESD grade</td>
<td>10^7~$10^9\Omega$ ESD grade</td>
<td>10^{10}~$10^{12}\Omega$</td>
</tr>
<tr>
<td>Color</td>
<td>black only</td>
<td>black only</td>
<td>Colorable or Transparent</td>
<td>Colorable or Transparent</td>
</tr>
</tbody>
</table>

* The costs shown above are typical examples.

* This method is suitable when colorable or transparent ESD compound is indispensable.
✔ OA machine parts,
✔ carrying trays for HDD platters and other parts, Si wafers,
✔ equipment for semiconductor fabs,
✔ electronic parts packing,
✔ parts of explosion-proof equipment for use in mines etc.
1. New permanent antistatic agent for masterbatch.
 (Compound of base resin, IDP and CIL-313)

2. New ESD grade transparent or color compound master batch.
 (Compound of base resin, IDP and CIL-313)
Carlit Singapore Pte., Ltd.

1 Paya Lebar Link,#04-01 Paya Lebar Quarter 1
Singapore 408533

Tel: +65-6955-8475
E-mail: csg@carlit.com.sg
URL: https://csg.com.sg